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Abstract
The quasi-probability distribution function for spins in the representation
(phase) space of the polar and azimuthal angles (ϑ, ϕ) (analogous to the Wigner
distribution for translational motion of a particle) is used to calculate the escape
rate for a uniaxial spin system via quantum transition state theory (TST). The
quantum corrections to the TST escape rate equation for classical magnetic
dipoles appear both in the prefactor and in the exponential part of the escape
rate unlike in the corresponding Wigner TST formula for particles and exhibit
a marked dependence on the spin number.

PACS numbers: 03.65.Yz, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

An understanding of quantum effects in the decay of metastable states of Brownian particles
and spins is essential in various relaxation problems in physics and chemistry, e.g. chemical
reaction rates, dynamics of a superconducting tunnelling junction, the reversal of the
magnetization of magnetic nanoparticles and molecular magnets, etc. The simplest description
of quantum corrections to thermally activated decay, via escape of particles over a potential
barrier due to thermal agitation, is afforded by transition state theory (TST) [1–4]. We remark
that in the rudimentary form of classical TST pertaining to a system with one degree of
freedom, the escape rate of a particle from an isolated potential well with normalized barrier
height β�V is

�cl ∼ ωa

2π
e−β�V , (1)

where ωa is the well angular (attempt) frequency, β = (kBT )−1, and kBT is the thermal
energy. In the present context, the first guess at a quantum transition state theory appears to
have been made by Wigner [5]. He proposed a quantum generalization of the classical TST by
introducing a phase-space (x, p) quasiprobability distribution function W(x, p, t), exhibiting
most of the properties of a classical phase-space distribution (see [6–9] for review). Wigner
[5] showed that the quantum correction represents an effective lowering of the potential barrier
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so enhancing the escape rate due to quantum tunnelling effects. Now TST always implies that
the dissipation to the bath does not affect the escape rate. Nevertheless, the results of TST
should still apply in a wide range of dissipation for which thermal noise is sufficiently strong
to thermalize the escaping particles yet not strong enough to disturb thermal equilibrium in
the well, i.e., a Maxwell–Boltzmann distribution still prevails everywhere including the top of
the barrier. In the context of the Kramers escape rate theory [10] model this is the so-called
intermediate damping case. Comprehensive reviews of applications and developments of TST
have been given by Hänggi et al [2], Benderskii et al [3] and Pollak and Talkner [4].

The quantum TST may also be used to study thermally assisted tunnelling of the
magnetization in spin systems. Mindful of the original classical calculation of the
magnetization relaxation time by Néel [11] using transition state theory (TST) such effects
will be important in quantum tunnelling phenomena in ferromagnetic nanoparticles [12]
(particularly in the crossover region between reversal of their magnetization by thermal
agitation over a potential barrier and reversal by macroscopic quantum tunnelling [12]) and also
in the spin dynamics of molecular magnets [13] as a function of (spin) size. Indeed such is the
importance of quantum effects in parameters characterizing the decay of metastable states in
spin systems that diverse theoretical methods, e.g., instantons, mapping of the spin Hamiltonian
onto equivalent particle Hamiltonians [14, 15], perturbation treatment of quantum-classical
escape rate transitions [16] have been developed in order to evaluate them. Yet another
approach to the foregoing problem essentially involves the extension of Wigner’s methods to
the phase-space description of spin systems. Thus quasiprobability density functions W(ϑ, ϕ)

in the representation space of polar and azimuthal angles (ϑ , ϕ) (the relevant canonical
variables) for spin systems at equilibrium have been determined using the Wigner–Stratonovich
phase-space formalism (see, e.g., [17–25]). The function W(ϑ, ϕ) for spins was originally
introduced by Stratonovich [17] and further developed by others (e.g., [18–25]). It is entirely
analogous to the translational Wigner distribution W(x, p) in phase space (x, p) [5] which is
the quasiprobability representation of the density operator except that certain differences arise
because of the angular momentum commutation relations. The phase-space formalism allows
quantum-mechanical averages involving the density matrix to be calculated just as classical
ones and so is eminently suited to the calculation of quantum corrections because it formally
represents quantum mechanics as a statistical theory on classical phase space [25].

Again recalling Néel’s classical TST calculation [11], the simplest description of quantum
effects in the magnetization reversal time of a nanoparticle should be provided by the inverse
escape rate from the wells of the magnetocrystalline and the external field potential as
determined by the quantum TST [3]. We reiterate that all forms of TST ignore the disturbance
to the equilibrium distribution in the wells created by the loss of representative points (in this
case the magnetization) due to escape over a barrier. Thus only the equilibrium distribution is
involved hence a quantum master equation describing the time evolution of the quasiprobability
density is unnecessary. Such an equation would be required, for example, to generalize the
classical escape rate theory of Kramers [10] for point particles and that of Brown [26, 27] for
single domain ferromagnetic particles using the Fokker–Planck equation (i.e., the bath–particle
interaction is characterized by the ansatz of frequent but weak collisions). In the classical
theory, the drift and diffusion coefficients may be determined using Einstein’s imposition
[28] of the Maxwell–Boltzmann distribution as the equilibrium solution of the Fokker–Planck
equation. In like manner, postulating [28–30] a Kramers–Moyal-like expansion truncated
at the second term (leading of course in the classical limit to the Fokker–Planck equation) as
the phase-space representation of the collision operator, the drift and diffusion coefficients in
the resulting quantum master equation may be determined by requiring that the equilibrium
quasiprobability distribution in the representation space renders the collision term zero. This
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has been illustrated for a spin in a uniform field in [31] and indicates clearly how all the
methods of solution of the Fokker–Planck equation extend to the master equation for quantum
spin relaxation just as for particles [28–30] leading in general, however, to involved analytical
and numerical calculations.

Now in view of the mathematical simplifications offered by the TST treatment of escape
rates, the object of this paper is to describe a phase-space formulation of TST for spins.
Moreover, because the uniaxial anisotropy potential is important in physical applications (see,
e.g., [24, 32–34] (in general giving rise to a multi-stable potential), we shall illustrate the
method by evaluating the TST escape rate for a uniaxial paramagnet of arbitrary spin value S
with Hamiltonian

βĤ S = −σ Ŝ2
Z, (2)

where ŜZ is the Z-component of the spin operator Ŝ, σ is the dimensionless internal field
parameter. In the classical limit, S → ∞, σ → 0 and σS2 = σ ′ = const, taking a single
domain ferromagnetic particle as example, equation (2) corresponds to the uniaxial anisotropy
potential

βĤ S → −σ ′ cos2 ϑ, (3)

where σ ′ is the dimensionless anisotropy parameter.
In order to outline the calculation of the escape rate for spins as determined by the quantum

TST, we must first briefly recall Wigner’s [5] quantum generalization of the classical TST for
particles. Here the over-barrier escape rate � for a particle moving in a potential V (x) is
defined by

� ∼ Itop/Zwell, (4)

where Itop = ∫ ∞
−∞

∫ ∞
−∞ J (x, p)δ(x − xc) dp dx is the current of particles over the barrier with

the current density J (x, p) = θ(p)(p/m)Wst(x, p), Wst(x, p) is the un-normalized Wigner
distribution function, θ is the unit step function and Zwell = ∫ ∫

well Wst(x, p) dp dx is the
partition function of the well region. The point c is the top of the barrier and point a is the
bottom of the well. Near the bottom of the well, Zwell may be approximated by that of a
harmonic oscillator with the characteristic well frequency ω0 = ωa so that using the explicit
form of the Wigner function for a quantum oscillator, namely,

Wa(x, p) = e−βV (xa)−(x2/〈x2〉+p2/〈p2〉)/2,

where 〈p2〉 = m2ω2
a〈x2〉 = (mh̄ωa/2) coth(βh̄ωa/2), we have

Zwell ≈
∫ ∞

−∞

∫ ∞

−∞
Wa(x, p) dx dp = πh̄csch(βh̄ωa/2) e−βV (xa). (5)

Near the top of the barrier, the Wigner function Wst(x, p) approximately corresponds to that
of an inverted harmonic oscillator with the top frequency ω0 = iωc so that

Wst(xc, p) ≈ e−βV (xc) sec(h̄ωcβ/2) e−p2 tan(βh̄ωc/2)/(mh̄ωc),

whence

Itop ≈ m−1
∫ ∞

0
pWst(xc, p) dp = h̄ωc csc(βh̄ωc/2) e−βV (xc)/2. (6)

Substituting equations (5) and (6) into equation (4), we have Wigner’s result

� ≈ (ωa/2π)� e−β�V , (7)

where �V = V (xc) − V (xa) is the barrier height and

� = ωc sinh(βh̄ωa/2)

ωa sin(βh̄ωc/2)
= 1 +

β2h̄2

24

(
ω2

c + ω2
a

)
+ · · ·

3
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is the quantum correction factor merely appearing as a change in the prefactor of the classical
TST escape rate equation (1).

Now in applying TST to classical spins (i.e., magnetic moments µ) and axially symmetric
problems (such as uniaxial anisotropy) the equation of motion of the magnetic moment µ in
the effective field H = −∂V/∂µ is

µ̇ = ω0 × µ, (8)

where ω0 = γ H is the precession frequency, γ is the gyromagnetic ratio, and

V (ϑ) = −kT σ ′ cos2 ϑ (9)

is the (Helmholtz) free energy. In the low temperature limit (high barrier approximation), as
far as TST is concerned, we have

�cl ∼ I cl
top

/
Zcl

well, (10)

where Zcl
well ∼ ∫

well e−βV (ϑ) sin ϑ dϑ is the well partition function and I cl
top is the total current

of the (magnetization) representative points over the barrier. Now for the uniaxial anisotropy
given by equation (9), the top of the barrier is situated at ϑc = π/2 and the bottom of the well
at ϑa = 0. The well partition function and total current may be estimated as

Zcl
well ∼ e−βV (ϑa)/(2σ ′), (11)

I cl
top ∼ 1

2π

∫
top

Jϑ e−βV (ϑ) dϑ ≈ γ

2πµβ
e−βV (ϑc). (12)

Here βV (ϑa) = −σ ′, βV (ϑc) = 0 and Jϑ = |µ̇|/µ = (γ /µ)∂ϑV (ϑ) = ωc cos ϑ sin ϑ is a
divergence-free current density [26], where ωc = 2γ σ ′/(βµ) is the barrier frequency. Hence
equation (10) yields the Néel formula [11]

�cl ∼ (ω0/2π) e−β�V , (13)

where �V = V (ϑc)−V (ϑa) is the barrier height and ω0 = 2γ σ ′/(µβ) is the well (precession)
frequency.

In order to calculate the quantum correction factor to the escape rate for a spin system using
the phase-space method, the equilibrium quasiprobability density function of spin orientations
on the surface of the unit sphere is required. The phase-space distribution W

(s)
S (ϑ, ϕ) for a

spin system given by Stratonovich [17] is defined by the invertible map

W
(s)
S (ϑ, ϕ) = Tr{ρ̂ŵs(ϑ, ϕ)}, (14)

where s parameterizes quasiprobability functions of spins belonging to the SU(2) dynamical
symmetry group such as considered here, ŵs(ϑ, ϕ) is the Wigner–Stratonovich operator or
kernel of the (bijective) transformation given by equation (14) defined as [24]

ŵs(ϑ, ϕ) =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
C

S,S
S,S,L,0

)−s
Y ∗

L,MT̂
(S)
L,M. (15)

Here the asterisk denotes the complex conjugate, YL,M(ϑ, ϕ) are the spherical harmonics [35],

T̂
(S)
L,M are the irreducible tensor (polarization) operators with matrix elements given by [35]

[
T̂

(S)
L,M

]
m′,m =

√
2L + 1

2S + 1
C

S,m′
S,M,L,m, (16)

4
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and C
S,S
S,S,L,0 and C

S,m′
S,M,L,m are the Clebsch–Gordan coefficients [35]. The function W

(−s)
S (ϑ, ϕ)

now allows us to calculate the average value 〈Â〉 = Tr{ρ̂Â} of an arbitrary spin operator Â

because the W
(−s)
S (ϑ, ϕ) provides the overlap relation [17]

〈Â〉 = 2S + 1

4π

∫
θ,ϕ

As(ϑ, ϕ)W
(−s)
S (ϑ, ϕ) sin ϑ dϑ dϕ, (17)

where As(ϑ, ϕ) = Tr{Âŵs(ϑ, ϕ)} is the Weyl symbol of the operator Â (see, e.g., [25]).
The parameter values s = 0 and s = ±1 correspond to the Stratonovich [17] and Berezin
[20] contravariant and covariant functions, respectively (the latter are directly related to the
P- and Q-symbols which appear naturally in the coherent state representation; see [22] for a
review). Here we consider W

(−1)
S (ϑ, ϕ) only; thus we omit everywhere the superscript −1

in W
(−1)
S (ϑ, ϕ) (W(1)

S (ϑ, ϕ) and W
(0)
S (ϑ, ϕ) can be treated in like manner). We have chosen

W
(−1)
S (ϑ, ϕ) because only this distribution satisfies the non-negativivity condition required of

a true probability density function, namely W
(−1)
S (ϑ, ϕ) � 0. The quasiprobability densities

W
(1)
S (ϑ, ϕ) and W

(0)
S (ϑ, ϕ) do not satisfy this condition [36].

The equilibrium phase-space distribution for a spin system with Hamiltonian βĤ S =
−ξ ŜZ − σ Ŝ2

Z has been obtained and discussed in detail in [36]. Here we only need the
particular case ξ = 0, so that WS(ϑ) is given by [36]

WS(ϑ) =
2S∑
L=0

�L=2

(2L + 1)

(2S + 1)
PL(cos ϑ)C

S,S
S,S,L,0

S∑
m=−S

C
S,m
S,m,L,0 eσm2

, (18)

where PL(cos ϑ) are the Legendre polynomials [35] and the explicit equations for the Clebsch–
Gordan coefficients C

S,m
S,m,L,m and C

S,m
S,m;L,0 are

C
S,S
S,S,L,0 = (2S)!

√
2S + 1

(2S − L)!(2S + L + 1)!
,

C
S,m
S,m,L,0 = (S + m)!(S − m)!(L!)2

√
(2S + 1)(2S − L)!

(2S + L + 1)!

×
L∑

n=0

(−1)n

[(L − n)!]2(n!)2(S − m − n)!(m + S + n − L)!
.

The distribution W from equation (18) corresponds to the equilibrium spin density matrix
ρ̂eq = e−βĤ S /ZS , where ZS = Tr{e−βĤ S } = ∑S

m=−S eσm2
is the partition function. For

arbitrary S, the leading terms of the series in sin2 ϑ and cos2 ϑ for the equilibrium distribution
W(ϑ) from equation (18) are

WS(ϑ) = WS(0){1 + (S/2)[e−(2S−1)σ − 1] sin2 ϑ + · · ·}, (19)

WS(ϑ) = WS(π/2)[1 + A cos2 ϑ + · · ·], (20)

respectively, where

WS(0) = eS2σ , (21)

WS(π/2) = (2S)!

22S

S∑
m=−S

eσm2

(S + m)!(S − m)!
, (22)
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Figure 1. (a) The distribution (S + 1/2)WS(ϑ)/ZS for σ ′ = 4 and various values of S. (b) The
distribution (S + 1/2)WS(ϑ)/ZS (solid lines) for σ ′ = 5 and S = 2 and 10. Crosses (+) and stars:
equation (23). Dashed lines: equation (24).

A =
∑S−1

m=−S+1
e(m−1)2σ +e(m+1)2σ −2em2σ

(S−1+m)!(S−1−m)!

2
∑S

m=−S
em2σ

(S+m)!(S−m)!

.

In the classical limit (S → ∞, σ → 0, σS2 = const = σ ′), the equilibrium distribution
WS(ϑ) tends to the Boltzmann distribution, i.e.,

(S + 1/2)WS(ϑ)/ZS → eσ ′ cos2 ϑ/Zcl,

where ZS = (S + 1/2)
∫ π

0 WS(ϑ) sin ϑ dϑ and Zcl = √
π/σ ′ erf i(

√
σ ′) are the quantum

and classical partition functions, respectively, and erf i(x) = (2/
√

π)
∫ x

0 et2
dt is the error

function of imaginary argument. The distribution (S + 1/2)WS(ϑ)/ZS is shown in figure 1(a)
for various values of S.

In the low temperature limit (2σ ′ 
 1), the series W(ϑ) in equation (18) can be
approximated to a very high degree of accuracy in the vicinity of the maxima at ϑ = 0
and ϑ = π as

WS(ϑ) ≈ e−σS(S−1)

{
f 2S

(2S−1)σ (ϑ), ϑ � 1,

f 2S
−(2S−1)σ (ϑ), π − ϑ � 1,

(23)

where the function fξ (ϑ) is defined as fξ (ϑ) = cosh(ξ/2) + sinh(ξ/2) cos ϑ . The
interpretation of equation (23) is that the dynamics of the spin at low temperatures comprise
precession in the effective magnetic field H = (βγ h̄)−1(2S − 1)σ . Next according to
equation (20), WS(ϑ) can be approximated in the vicinity of the barrier top by the

6
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Boltzmann-like distribution

WS(ϑ) ≈ WS(π/2) eA cos2 ϑ (24)

(see figure 1(b)).
Now for a system of noninteracting spins (so that exchange interactions are ignored), the

quantum dynamics of a spin in an external magnetic field H, with Hamiltonian Ĥ S = −γ h̄Ŝ · H
obey [37] the equation (cf equation (8))

d

dt
Ŝ = i

h̄
[Ĥ S, Ŝ] = ω × Ŝ, (25)

where ω = γ H. Noting that the appropriate correspondence rules (equation (17)) of spin
operators and Weyl symbols (c-numbers) in the phase space (ϑ, ϕ) are [24]

ŜX → (S + 1) sin ϑ cos ϕ, ŜY → (S + 1) sin ϑ sin ϕ, ŜZ → (S + 1) cos ϑ,

we have |Ṡ| → ω (S+1) sin ϑ . Furthermore, equation (25) may also be used as an approximate
equation of motion for a spin in the effective anisotropy field H. Hence, we may evaluate the
semiclassical TST escape rate � for a uniaxial paramagnet of arbitrary spin value S in the low
temperature limit from the flux over barrier, equation (4), where Itop and Zwell denote the total
current of representative points over the barrier (ϑc = π/2) and the well partition function,
respectively,

Itop ∼ 1

2π(S + 1)

∫
top

|Ṡ| WS(ϑ) dϑ, (26)

Zwell ∼
∫

well
WS(ϑ) sin ϑ dϑ, (27)

First by noting that(
S +

1

2

)∫ π

0
f 2S

ξ (ϑ) sin ϑ dϑ = sinh

[(
S +

1

2

)
ξ

]/
sinh

1

2
ξ,

equations (23) and (27) yield

Z−1
well ≈

(
S +

1

2

)
[1 − e−σ(2S−1)] e−σS2

. (28)

Next in view of equation (24), the barrier angular frequency ωc for the uniaxial potential
−A cos2 ϑ , is ωc = 2γA/(µβ), where µ = h̄γ S. Hence using Jϑ = |Ṡ|/(S + 1) ∼
ωc cos ϑ sin ϑ , the current Itop may be estimated as

Itop ≈ γWS(π/2)/(2πµβ). (29)

For the purpose of comparison with the TST equations (7) and (13) for particles and classical
magnetic dipoles, we can write the resulting TST escape rate formula for spins in canonical
form, namely,

� ∼ (ω0/2π)� e−β�V , (30)

where ω0 = σ(2S − 1)/(h̄β), � and β�V = ln[WS(0)/WS(π/2)] are, respectively, the
quantum correction factor (analogous to that for particles equation (7)) and ‘effective’ barrier
height given by

� = 2S + 1

2σS(2S − 1)
[1 − e−σ(2S−1)], (31)

β�V = σS2 − ln WS(π/2). (32)

7
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Figure 2. The barrier height β�V versus S for σ ′ = 5, 10 and 15. Symbols: equation (32).

The TST spin escape rate so written displays, however, a vital difference with the corresponding
result for particles equation (7) because now both the effective barrier height β�V , i.e., the
argument of the exponential and the quantum correction factor � which is associated with
the prefactor strongly depend on the spin number S yielding β�V → β�V cl = σ ′ and
� → 1, respectively in the classical limit unlike in equation (7) where the exponential is
simply the classical Boltzmann factor. This may be explained as follows. For particles, a
harmonic oscillator approximation may be used in calculating the Wigner distribution at both
the well and saddle point which is effectively a Maxwell–Boltzmann distribution at these
points consequently leading to equation (7) so that the Boltzmann factor is preserved (a result
which is entirely in accord with the fact that [38] the Wigner evolution equation for a harmonic
oscillator is the same as the Liouville equation). This is obviously not true of the Wigner
function for spins which never has the form of such a distribution with the sole exception of
the classical limit. We remark, however, that the effective barrier β�V is still smaller than its
classical value σ ′ (see figure 2) in accordance with Wigner’s prediction for particles.

In this note we have illustrated how the Wigner–Stratonovich phase-space approach for
spins may be used to directly calculate TST escape rates. Hitherto these have usually been
calculated indirectly by mapping the spin Hamiltonian onto an equivalent particle Hamiltonian
and then using TST for particles [15, 16, 39]. Thus one may determine the greatest relaxation
time of the magnetization as a function of spin size as we have illustrated for the simple
uniaxial potential of the magnetocrystalline anisotropy in a manner essentially very similar
to the classical case. The result epitomises the difference between the quantum corrections
for particles and those for spins, e.g., the correction to both the effective barrier height and
prefactor already alluded to. The method we have outlined may also be extended to non-
axially symmetric systems [40] as the equilibrium distribution W(ϑ, ϕ) can be evaluated for
an arbitrary spin Hamiltonian Ĥ S [36, 40].

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland (project no 05/RFP/PHY/0070). We thank Dr S V Titov and
Dr B P J Mulligan for helpful conversations.
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